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Summary 

The free-convective boundary-layer flow over the surface of a sphere whose temperature is suddenly raised to a 
value greater than its surroundings is considered. Numerical solutions of the boundary-layer equations are 
presented which give a complete description of the flow and which confirm the appearance of a singularity in the 
solution at the upper pole after a finite time. 

1. Introduction 

There has been considerable interest shown recently in the free convection boundary-layer 
flow at the surface of an isolated sphere which is maintained at a temperature different 
f rom that of its surroundings. Potter and Riley [1] consider the case of a steady flow and, 
in particular, they draw attention to the singularity which develops in the solution at the 
upper pole of the sphere. Brown and Simpson [2] shed further light upon the structure of 
this singularity and~ in addition, address themselves to the unsteady flow which arises 
when the sphere temperature is suddenly raised above that of its surroundings. For this 
unsteady problem they argue, on the basis of a local solution in the neighbourhood of the 
upper pole, that the boundary-layer solution breaks down at a finite time following the 
initiation of the motion. From a detailed analysis of the complicated multi-layered 
structure of this breakdown, and a numerical solution of the local governing equations, 
they are able to estimate the time at which the boundary-layer solution fails. Physically 
this breakdown corresponds to an eruption of the surface boundary layer to form the 
free-convective plume above the sphere. 

In the present paper we turn attention once more to the unsteady problem and solve 
completely the unsteady boundary-layer equations, appropriate to the situation which 
arises when the temperature of the sphere is suddenly raised to a uniform value greater 
than its surroundings, by numerical methods. It  proves convenient to first construct, by 
standard methods, a series solution which is valid for small time over the surface of the 
sphere. The solutiofi is then continued to larger times by a finite-difference method 
proposed by Hall [3]. Except at the upper pole it is possible to monitor the development of 
the solution from initiation to a steady state. At the upper pole itself the solution develops 
a singularity at finite time, as in the local solution of Brown ancl Simpson [2]. 

In Section 2 we derive the unsteady boundary-layer equations for our high-Grashof 
number  flow and outline the numerical method of solution of these in Section 3. In 
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Section 4 we present the results of our calculations for a representative case. Principal 
amongst these is the solution at the upper pole where, within the framework of our global 
solution, we find precisely the same singular behaviour as in [2]. We conclude that there is 
now a complete understanding of the nature of the free-convection boundary-layer flow 
over the surface of a heated sphere. 

2. E q u a t i o n s  o f  m o t i o n  

For  a Boussinesq fluid, in which variable fluid properties are ignored except in the 
buoyancy term, the equations which govern a buoyancy-driven, unsteady laminar motion 
are 

~7 " v = 0 ,  

1 P - Ooo ( 2 . 1 )  3---~V + V.  V V  = -- - -  V p  + vooV2V - - g ,  

3 t Poo Poo 

3T 
+ v" V T =  tcoov2T. 

3--7 

In these equations p denotes pressure, T temperature, 0 density, v kinematic viscosity and 
thermal diffusivity with a subscript ~ denoting conditions in some ambient or reference 

state. The vectors v, g denote velocity, and acceleration due to gravity respectively. In our 
problem a sphere, of radius a, is at temperature T~ in a fluid which is otherwise at rest. At 
time t = 0 the surface temperature of the sphere is raised to, and maintained at, a 
temperature T w > Too and a fluid motion ensues. Dimensionless variables are introduced 
into (2.1) with a as a typical length, (ga(T~, - Too)/Too )1/2 a typical velocity, { a T ~ / g ( T  w 

--Toy)} 1/2 a typical time and a dimensionless temperature 0 is defined as 0 = ( T -  
T o o ) / ( T  w - Too ). In the boundary-layer approximation, which we make below, the pressure 
is uniform everywhere at leading order and the equation of state reduces to 

o T  = pooToo. (2.2) 

We define a Grashof number as Gr  = ga3(Tw - T o o ) / v 2 T ~  and for Gr  >> 1 we introduce a 
small parameter c such that E 2 = Gr -a. As boundary-layer co-ordinates we let x measure 
angular distance from the lower pole of the sphere and define y = ( r  - a ) / d / 2 a  where r is 
measured radially from the centre of the sphere. If  (U, V) are the dimensionless velocity 
components in the directions of (x, r)  increasing we define u = U, v = c l / 2 v  so that 
finally, in the formal  limit c ~ 0, we have from (2.1) the following boundary-layer 
equations to solve 

a a 
~---~- (u sin x)  + ~-~. (v sin x)  = 0, (2.3a) 
3x o y  

3U 3U 3U 32U 
- -  - - -  + 0 sin x, (2.3b) 3t + u ~ x  + v 3y 3 y  2 

b0 30 30 1 320 
- -  - ( 2 . 3 c )  
3t + u ~ x  + v 3y a 3y 2 ' 
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where o = v ~ / x ~  is the Prandtl number. The boundary conditions to which (2.3) are 
subject, for our impulsively heated sphere, are as follows 

u = 0 = 0 ,  t = 0 ,  y > 0 ;  

u = v = 0, 0 = 1, y = 0, t > 0; (2.4) 

u, 0--->0asy---, ~ ,  t > 0 .  

3. S o l u t i o n  procedure  

We divide our solution procedure for (2.3), subject to the conditions (2.4), into three parts. 
At the initial instant a vortex sheet, across which the temperature changes discontinuously, 
is formed at the surface of the sphere and this is subsequently modified both by diffusion 
and convection. As a consequence it proves convenient to develop a solution in the form 
of a series for t << 1. Also since the lower pole, x = 0, is a stagnation point of the flow it is 
necessary to establish the form of the solution in its neighbourhood. Finally the solution is 
advanced away from the lines t = 0, x > 0 and x = 0, t >~ 0 by adapting a method for the 
solution of the unsteady boundary-layer equations developed by Hall [3] to the present 
problem. This method is described in detail in Section 3.3 below but basically our strategy 
is, for each station x, to integrate the equations (2.3) in the direction of t increasing until a 
steady state is achieved, unless the calculation fails due to the presence of a singularity in 
the solution at a finite value of t. Let us next consider the solution in each of its three 
parts, as described above, in turn. 

3.1. The solution for t << 1 

In common with other problems in which diffusion initially dominates the variable y / t  1/2 
is an appropriate one with which to work. Also for this part  of the solution procedure it is 
convenient to work with a stream function ~k. Thus if ~b is defined so that 

1 3~b 1 3~k 
u - . , v ( 3 . 1 )  

s m x  3y s inx  3 x '  

then Eqn. (2.3a) is satisfied exactly and we have two equations to solve for ~k, 0 derived 
from (2.3b), (2.3c) using (3.1). The solutions of these equations, for small t, are written as 

~b = 8t 3/2 sin2xF0(n) + 128t 7/2 sin2x cos xFl(~l ) + . . . ,  

0 = 0o01 ) + 32t 2 cos xOa(n) + . . . .  77 = y / 2 t  1/2, (3.2) 

where we immediately have 00 = 1 - erf ol/2 7 and F 0, F1, 01 satisfy the following ordinary 
differential equations, with a prime denoting differentiation with respect to ~/: 

Fo'" + 2~lF~' -4F~ +Oo=O , F o ( O ) = F ~ ) ( O ) = F ; ( ~ ) = O ,  

O-10ft  q- 2nO ~ -- 801 -{- O~)F 0 = O, 01(0 ) = Ol(OO ) = 0, (3.3) 

F ( "  + 2nF~' - 12F~ - F '2 + 2FOG' + 201 = 0,  F I ( 0 )  = F;(O) = F;(~) = o. 

The equations (3.3) have been solved using a standard collocation method which employs 
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Chebychev polynomials. As we shall see below the number of terms we have retained in 
each of the series (3.2) is sufficient to provide a starting solution for our integration, at 
each x-station, in the direction of t increasing. 

3.2. The solution for x << 1 

Close to x = 0 the solution may be developed as a series in powers of x, for t > 0. The 
leading term of this series provides a boundary condition which is required, along with 
that for small t, if the solution is to be extended to all points of the region x, y, t > 0. For 
the leading term we write 

u = x f ( y ,  t ) ,  v = g ( y ,  t), O=h(y ,  t) 

so that f ,  g and h satisfy, from Eqns. (2.3), 

Og 
2 f  + -3--f = 0, 

Of -2 Of 02f +h,  
(3.4) 

Oh Oh I 02h 
0--7 -]'- g Oy o Oy 2 ' 

with boundary conditions at some initial time provided by the solution of Section 3.1 
together with f(0,  t ) =  g(0, t) = 0, h(0, t) = 1, f ( ~ ,  t) = h ( ~ ,  t) = 0. The method of solu- 
tion that we have used to solve Eqns. (3.4) with these boundary conditions is a 
straightforward adaptation of that described below for the three-dimensional calculation. 

3.3. The solution procedure for x, t = 0(1) 

To advance the solution away from x, t = 0 we have solved the equations (2.3) by a 
finite-difference method based upon that developed by Hall [3]. A triple-suffix notation is 
used so that, for example, u~ . . . .  represents the value of u at the pivotal point (1, m, n) 
which is the point ( l -  1)By from the boundary y = O, (m - 1)St from the initial instant t i 
and ( n -  1)3x from the lower stagnation point x = 0, where 6x, By, 8t represent the 
lengths of the sides of the rectangular mesh we have used. All the derivatives in (2.3) are 
represented by central differences, which means that both terms of the equation (2.3a) are 
evaluated at the point (l  + ½, m + ½, n + ½) whilst all terms in (2.3b, c) are evaluated at 
the point (1, m + ½, n + ½). The nonlinear term uOu/ax in (2.3b) is treated by an iterative 
process so that in each cycle of the iterative procedure described below only linear 
equations are to be solved. Thus the approximation used for the ( j  + 1)th cycle is 

Since Eqns. (2.3) are parabolic in both x and t we may advance the solution in the 
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direction of x, t increasing in a variety of ways. In the event we have chosen, at each 
• x-station around the sphere, to  advance the solution in time t, up to some value tf, before 
proceeding to the next x-station. Thus values of u, 0 are calcUlated, at all points across the 
boundary layer, at the station (m + 1, n + 1) from the previously calculated values at 
stations (m, n), (m + 1, n) and (m, n + 1); the values for n = 1, that is at x = 0, are given 
by obtaining the solution of Eqns. (3.4), and the solution at m = 1 is given by the 
small-time solution at t = t i discussed in Section 3.1. As we shall see, although this 
procedure yields values of u, 0 at the grid points the value of the normal velocity v is given 
at the centre of the mesh, that is at the station (m + ½, n + ½). 

With the overall procedure as described above we now present the discretised version of 
the partial differential Eqns. (2.3). As a preliminary we define some subsidiary quantities 
as follows: 

s l 
Ul -- 4 (Ul ,m+l ,n  -~- Ul . . . .  +1 + Ill . . . .  ) '  

U 7 ~ Ul,m,n+ 1 -- Ul,m+l, n -- Ul,m,n~ 

U T ~ Ul,m+l, n -- Ul,m,n+ 1 -- Ul,m,n, 

with quantities 0/, O F and 0t m similarly defined. Using central difference formulae, as 
indicated above, the discretised forms of (2.3a), (2.3c) and (2.3b) may be written, 
respectively, as 

Ul+ l,m+ l/2,n+ l /2  = UI,m+ l/2,n+ l /2  -- ~ y (  ( Ul+ l,m+ l,n+ a 

1 1cot ) X ~XX  "1- Xn+l /2  

"}- Ul ,m+l ,n+l)  

u" u' / ) /43x Jr ~ c o t  X n + l / 2 ( U , +  1 "t- / . / ; )}  ._}_( l+ 1 .~_ 1 s 
) 

alOl+ l,m+ l,n+ 1 "4- blOi,m+ l,n+ 1 Jr ClOl_ l,m+ l,n+ 1 -~- dl, 

OllUl+ l,m+ l,n+ 1 "~- t~lUl,m+ l,n+ l + ~lUl_ l,m+ l,n+ l = 81, 

where the coefficients a z etc. in (3.6b, c) are defined as 

a l ..~- 
UI,m+ l/2,n+ l /2  1 

88y 4aSy 2'  
1 1 

bl ...~. ~ T  q_ ~.~x ( l Ul,m+ l,n+ l _}_ USl ) _.}_ 1 
208y= ' 

Vl,m + 1/2,n + 1/2 1 
ct = - 88y 4o8y 2 ' 

= [ 1 Ul 'm+l/2 'n+l/2  I -s 2 
dl 

I oSy 2 26y ] 01+ 1 o ~ y  2 
1 

- - - ° ' s  + o--a7 + 

(3.6a) 

(3.6b) 

(3.6c) 

Ul'm+ l/2'n+ l /2  ) 
2~y Of-1 

l~_om__ 1 1 
28t ' ~-~x (gUl ,m+l ,n+l  "I- U] )O; ,  



where we have now used a tilde in/~/, 6~ to denote a value of ut,=+~,n+ 1 that has been 
obtained in an earlier iterative cycle than that under consideration. The iterative proce- 
dure, to obtain a converged solution at the station (m + 1, n + 1), is as follows. First we 
need an initial estimate of Ut,m+ 1,~ + 1 which we obtain by a simple extrapolation from the 
three neighbouring points as 

From this initial estimate we calculate vt.,,,+a/2,,,+l/2 , at the centre of our computation 
mesh, for all points across the boundary layer, by letting l = 1 to N -  1 in (3.6a) where 
( N  - 1)8y is the total thickness assumed for the boundary layer. If  in Eqn. (3.6b) we now 
let l = 2 to N -  1 we have, with the coefficients evaluated from the available values of 
Ul, m+l/2,n+l/2, Ul, m+l,n+l, a set of linear equations which may be solved, using Thomas 's  
algorithm, to give us an estimate of 0~,m+l,,+ 1. We are then in a position to move onto 
(3.6c), which may similarly be solved, to give an improved estimate for ul, m + 1,, +1 which in 
turn can be used to improve the estimate of V~,m+l/2,n+l/2 and so on. This procedure 
differs from that originally introduced by Hall [3] only with the additional step which 
involves the calculation of the temperature 0. In practice the method works well and yields 
a converged solution at the new station quite quickly. As a criterion for convergence we 
calculate, following each iteration, Y,[u j+l - uJ[, •10 j + l  - -  oil, Y.[0 j + l  - -  O J[ and deem the 
solution to be converged when these three quantities are, simultaneously, less than some 
prescribed quantity 8. The solution may then proceed to the next station. 

The solutions which we have obtained by the methods described above are described in 
the following section. 

4. Results and discussion 

For all the results which we present in this section we have taken the Prandtl number 
o = 0.72 and for the convergence criterion for our solutions we have set 6 = 10 -6. In 
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addition we have utilised the small-time solution of Section 3.1 as an initial condition 
applied at t i = 0.25, even though our two-term expansions are seen to be valid for t _< 1.0. 
The grid sizes that we have used are as follows: 3x = ~r/31 for x ~< 29~r/31, 8x = ~r/62 for 
29~r/31 < x ~< 7r, 3y = 0.2 and 3t = 0.1. Earlier results obtained for both steady [1] and 
unsteady [2] flow suggest that these values are adequate to give results to the accuracy that 
we quote them here. In order to accommodate the rapidly thickening boundary layer as 
the upper pole is approached we have applied the far-field conditions at y = y~ = 200. At 
each x-station we have carried our integration from t = t i out to t = tf = 6. Up to x = 37r/4 
the solution has settled down to a steady state at this value of tf; however, for larger 
values of x, as the upper pole is approached, the solution does not yield its steady state 
completely until a greater lapse of time has occurred. We should mention that all our 
steady-state solutions are in close agreement with the results presented by Potter and Riley 
[1]. 

A feature of the steady convective flow [1] is the singular behaviour of the boundary- 
layer solution as the fluid erupts at the upper pole. Brown and Simpson [2] in their work 
suggest that this singularity does not appear at infinite time, following the impulsive 
heating of the sphere, but that the unsteady flow becomes singular at x = ~r at a finite time 
t s. Their work is based on a local expansion about x = ~r, the terminal point of the 
boundary layer as far as the spatial co-ordinate x is concerned. In spite of the parabolic 
nature of the governing equations (2.3) one might expect that any singular behaviour has 
its structure revealed by a local analysis. The objects of the present paper  include not only 
an elucidation of the main flow features as they evolve towards a steady state, but also a 
verification of the nature of the singularity at x = ~r, t = t s as proposed in [2]. Brown and 
Simpson [2] show that close to the singular point the flow field may be divided into three 
regions namely an interior region, within which the flow is effectively inviscid, flanked by 
regions within which viscous terms cannot be ignored. It  is within the inviscid interior 
region that the flow eruption is seen to take place. In estimating t s Brown and Simpson 
choose to examine the singularity in u/(cr - x )  by means of a numerical integration along 
x = ~r. This is not a convenient parameter  to work with in our calculations although we 
can confirm the vanishing of u on x - ~r, in which respect the flow differs from the steady 
case described in [1]. Instead we prefer to work with another representative flow 
parameter, namely the thermal boundary-layer thickness, 3r, defined as 

3r  = f0~0dy. (4.1) 

Before we consider this singular behaviour further we look at other overall features of the 
unsteady flow development over the surface of the sphere; in particular we present results 
for v~ = v(x ,  y~,  t), the outflow velocity from the boundary layer, the thermal boundary- 
layer thickness 3 r and the local heat transfer O0/3yly= o at the sphere surface. 

Consider first the heat transfer coefficient which is shown in Fig. 1. From the solution 
outlined in Section 3.1 we have, for o = 0.72, 

20 y=0 3--f = - 0.4787t- 1/2 _ 0.0374 cos xt  3/2 + O( t 7/2 ), (4.2) 

for t << 1. We see from Fig. 1 how the heat transfer falls from its initially high values to a 
clearly defined steady state. However one might note that this progression is not 
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Figure 1. The heat-transfer coefficient K =-~O/Oyly= o at various stations over the surface of the sphere. 
- -  x=0, x=87r/31, - . . . . . .  x=167r/31, - . . . . . . . . .  x=23~r/31, - . . . . . . . . . . . .  
x = 30~r/31. 

monotonic; for all values of x the heat transfer exhibits a shallow minimum which appears 
to be associated with a maximum in the boundary-layer thickness. This "overshoot" in the 
boundary layer thickness is presumably associated with a delay in the action of convective 
effects, compared with diffusive effects, at this Prandtl number, at least for x < ½~r. 

In Fig. 2 we show the outflow velocity from the boundary layer, voo. From the 
small-time solution of Section 3.1 we infer, that for t << 1, 

o~ = -0 .9592  cos x t  3/2 + 0.0945(2 cos2x - sinZx)t 7/2 + 0 ( t 1 1 / 2 ) .  (4.3) 

Consider first Fig. 2a in which voo is shown for x _< 3~r/4. For x _< ½~r the boundary layer 
always entrains fluid, and the velocity decreases from zero to its (negative) steady-state 
value monotonically. On the upper hemisphere, that is for x > ½7r, a geometrical con- 
straint is removed and as the fluid begins to convect upwards it is seen to have a 
component  of velocity radially outwards. As this transient phenomenon gives way to a 
steady state there is again entrainment into the boundary layer. We note at this point that 
for the boundary-layer flow under consideration the steady state is finally characterised by 
a steady inflow into the boundary layer. Other flow properties may achieve a steady state 
before the outflow velocity, see for example the heat transfer coefficient in Fig. 1. As we 
move further around the sphere, see Fig. 2b, so this transient outflow velocity becomes 
more emphasised until, as x ~ ~r, there is clear evidence of a singular behaviour appearing 
in the solution. Since our solution method, described in Section 3, does not yield values of 
v at the grid points, but at the centre of each mesh, it is not possible for us to comment  
upon the nature of the singularity from this quantity. The most convenient quantity to 
examine, in this respect, from our calculations is the thermal boundary-layer thickness ~T. 
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Figure 3 shows the variation of 87-, defined in Eqn. (4.1), as a function of t. For t << 1 
the solution described in Section 3.1 gives, using (4.1), 

3 r = 1.3298t a/2 - 0.1139 cos x t  5/2 + 0( t9 /2 ) .  (4.4) 

The results obtained in [2] show that as t ~ t s we may expect 

8 T ~ a0T-3/2 + al ~-1, (4.5) 

where ~" = t s - t; the constants ts, a 0 and a 1 are to be determined. In Fig. 3a the variation 
of 8r, for values of x which cover almost the whole sphere, is shown and features which 
have been anticipated earlier are to be seen. Thus, for x _< 3~r/4 the boundary layer 
remains quite thin and, following a mild overshoot, quickly attains its steady-state value. 
For x > 3rr/4 a much more rapid thickening of the boundary layer is observed with the 
overshoot becoming quite pronounced. Indeed for x close to ¢r the solution appears to be 
developing the singular behaviour that was referred to when the outflow velocity v~ was 
under discussion. In Fig. 3b the variation of 8 r with t along x = ~r is shown, and the 
singularity which the solution develops is clearly to be observed. Beyond t = 2.75 our 
solutions are no longer accurate, and we have estimated the constants in the asymptotic 
form (4.5) from the solution up to that point as a 0 = 3.064, a 1 = - - 0 . 2 9 8  and t, = 2.922. 
Both the small-time solution (4.4) and the asymptotic solution (4.5) are also shown in Fig. 
3b. The singular time t s has been estimated by Brown and Simpson [2] following an 
examination of u / ( r r  - x )  in their local solution; they estimate t~ = 2.912. Considering the 
diverse methods which have been used to estimate the time at which the solution breaks 
down at the upper pole the agreement between the values of ts obtained, differing as they 
do by -~ %, is quite remarkable, and we may conclude that our overall understanding of 
this unsteady free convection problem is now almost complete; the only gap in our 
knowledge is along x = ~r, t~ ~< t < m where it is unlikely (see [1]) that the flow is governed 
by the boundary-layer equations. 
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